
Thibault Raffaillac

Language and System
Support for Interaction

Supervised by Stéphane Huot
and Stéphane Ducasse

Centre de Recherche en Informatique,
 Signal et Automatique de Lille

Prototyping interaction techniques

Sigma Lenses (Pietriga and Appert)
Bubble Cursor (Grossman and

Balakrishnan) ExposeHK (Malacria et. al)

Challenging the architectures of frameworks

Requiring developers to use non-standard code

Prototyping interaction techniques

ExposeHK (Malacria et. al)

⌘W ⌘M ⌘← ⇧⌘M ⌘P ⌘I ⇧⌘R ⌘R
⌘T

Prototyping interaction techniques

⌘W ⌘M ⌘← ⇧⌘M ⌘P ⌘I ⇧⌘R ⌘R
⌘T

Problem: 
buttons may execute 

commands after some code

Problem: 
shortcuts are stored in 

the menus, not the buttons

Problem: 
regular buttons may not 

draw outside their bounds

Problems

Simple interaction ideas are not simple to implement.

Frameworks describe interfaces rather than interaction.

Lack of tools to introspect and edit live interfaces.

Lack of knowledge on how users hack these systems.

Thesis context: Pharo Smalltalk

Live programming environment, pure object-oriented

Supports prototyping with introspection (inspect objects)

Ageing interface (Morphic)

Successor (Bloc) being 
developed elsewhere

Contribute indirectly

Thesis context: Pharo Smalltalk

Working on language and system below frameworks

Taking advantage of Pharo's  
reflectivity (access and modify 
language structures)

In close contact with its core 
developers

Framework(s)

Standard library

Interaction primitives

Programming language

Goal: 
Improve the flexibility of interaction frameworks, indirectly

Plan

1. What can we add to languages to support interaction?

2. How can we make interaction a 1st class object?

3. What do designers of new techniques need?

Plan

1. What can we add to languages to support interaction?

2. How can we make interaction a 1st class object?

3. What do designers of new techniques need?

Creating language primitives

Cement and simplify established practices

Reduce frameworks' complexity

Remain consistent across applications

Evolve languages towards interactivity

Generative (unexpected uses)

Creating language primitives

[object property: value] during: 2 seconds

➡ How do I validate it being "simpler"?

[mouse click] afterDo: [object doSomething]

➡ What is a standard way to design this properly?

Plan

1. What can we add to languages to support interaction?

2. How can we make interaction a 1st class object?

3. What do designers of new techniques need?

First class objects

❖ In programming: first class citizens support common
operations on variables (assignment, pass/return with
function, modification)

❖ In HCI: open to interpretation

First class objects

StickyLines (Ciolfi Felice et. al)

Max/MSP

Surrogate Objects (Kwon et. al)

Google Spreadsheet

Characterizing “first-class”

Captures attention while in interaction

Revealed as normally invisible

Available everywhere

Shifts the point of view to itself

Provides advanced functions

When programming interaction
class Mouse {
 float dx, dy;
 bool[] buttons;
 float dpi;
};

class Keyboard {
 bool[] keys;
 bool[] modifiers;
 float backlight;
};

⌘W, ⌘M, ⌘←, ...

Plan

1. What can we add to languages to support interaction?

2. How can we make interaction a 1st class object?

3. What do designers of new techniques need?

Interviews
8 semi-structured interviews of researchers who
prototyped advanced interaction techniques

Feb - May 2016

8h of audio recordings

Questions seeking problems 
encountered at every stages 
of their projects

Interviews
Initially could not make sense of the data 
(What to look for?) and gave up

After doing bibliography, committed to analyse along:

❖ Problems faced

❖ Explicit needs

❖ Tools deemed useful

❖ Hacking strategies

Course of action

❖ July - September: analysis of interviews

❖ October - December: Validation of delay operator

❖ October - April: Exploration of listener operator

Thank you for your attention!
Thibault Raffaillac 

thibault.raffaillac@inria.fr

[object property: value] during: 2 seconds

[mouse click] afterDo: [object doSomething]

class Mouse {
 float dx, dy;
 bool[] buttons;
 float dpi;
};

class Keyboard {
 bool[] keys;
 bool[] modifiers;
 float backlight;
};

mailto:thibault.raffaillac@inria.fr

