

Exploring the Design
of Compiler Feedback

 T H I B A U L T R A F F A I L L A C

 Master of Science Thesis
 Stockholm, Sweden 2012

Exploring the Design
of Compiler Feedback

 T H I B A U L T R A F F A I L L A C

DH224X, Master’s Thesis in Human-Computer Interaction (30 ECTS credits)
 Degree Progr. in Computer Science and Engineering 270 credits
 Royal Institute of Technology year 2012
 Supervisor at CSC was Ylva Fernaeus
 Examiner was Henrik Artman

 TRITA-CSC-E 2012:084
 ISRN-KTH/CSC/E--12/084--SE
 ISSN-1653-5715

 Royal Institute of Technology
 School of Computer Science and Communication

 KTH CSC
 SE-100 44 Stockholm, Sweden

 URL: www.kth.se/csc

Exploring the design of compiler feedback

Abstract
Nowadays, programmers willing to start optimising their code must undergo a lengthy
interaction with dedicated profiling tools. This Degree Thesis proposes as an
alternative to make compilers generate feedback messages aimed at explaining how
they understand the code, and how it could be improved. The study aims at foreseeing
the technical integration of feedback notifications in modern compilers, as well as
sketching how Integrated Development Environments (IDE) would display them.

A first comparison of three related works enables the core differentiators to be
highlighted: letting the compiler inform where code is actually fine and does not need
any refinement, displaying the notifications along the relevant source lines rather than
in a separate interface, insisting on the absence of artificial intelligence, and
introducing a filter heuristic to take into account the less significant messages. Then,
a preparatory user study is carried to observe different programmers and poll their
receptiveness to a compiler feedback. The findings relate the usefulness of
optimisations' suggestions to fit where users lack expert knowledge, the existence of
dormant interrogations calling for serendipitous information retrieval, and the
mistakes inherent to Message of the Day windows which should be avoided.

Three prototypes are designed to embody three different approaches, using Web tools
to provide a close appearance to code editors along with decent interactivity. With the
help of a new user study with the prototypes, a final set of refinements is discussed so
as to shape a coherent result and differentiate it further: users can create and share
sets of feedback messages to supplement the ones included in their compiler, a list of
rules is provided to help designers compose the messages, an emphasis is laid on
transparency to help exhibit the absence of artificial intelligence, and the heuristic
used to sort and filter the displayable notifications is sketched.

Utforskning av kompilatorfeedbacksdesign

Sammanfattning
Programmerare som vill optimera sin kod måste normalt genomgå en ganska
omständlig process med hjälp av ett dedikerat profileringsverktyg. Detta
examensarbete diskuterar olika alternativ där kompilatorn mer direkt genererar
återkoppling på hur den tolkat koden, och hur den kan förbättras. Studien syftar till
att ge ökad insikt i utvecklingen mot teknisk integrering av feedback-tillämpningar i
moderna kompilatorer, samt att skissa på hur det skulle kunna se ut om de visades i
integrerade utvecklingsmiljöer (IDE).

En första jämförelse av tre relaterade arbeten ledde fram till några utmärkande
egenskaper att arbeta för, kompilatorernas nuvarande sätt att informera om koden är
redan bra och behöver inte någon förfining, att visa notifieringar längs den berörda
källrader stället i ett separat gränssnitt, att undvika lösningar som bygger på
artificiell intelligens, och att införa ett filter som heuristisk tar hänsyn till mindre
viktiga meddelanden. Därefter tillsattes en förstudie där inställningen till
kompilatorfeedback undersöktes bland en grupp programmerare. Resultaten
relaterade nyttan med förslag på optimeringar när användarna saknar
expertkunskap, slumpartat informationssökning, och problem som t ex att ” dagens
meddelande” bör undvikas.

Tre prototyper utformades för att förkroppsliga tre olika metoder för hur detta skulle
kunna ta form, dessa presenteras online för att ge ett nära utseende av verkliga
kodbehandlare och erbjuda enkel interaktivitet. Efter en slutlig användarstudie med
dessa prototyper reviderades uppsättningen med finesser och förslag med en
ytterligare specialisering, dvs att låta användare skapa och dela lämpliga feedback-
meddelanden som kompletterar de som ingår i kompilatorn själv, en förteckning över
regler för att hjälpa konstruktörer skriva meddelanden, med en betoning på öppenhet
för att uppvisa avsaknad av artificiell intelligens, samt utarbetning av tumregler för
att sortera och filtrera visningsbara notifikationer.

Table of Contents
 1. Introduction...1

 1.1. Problem definition..2
 1.2. Challenges...3
 1.3. Method..4

 2. Related work..6
 2.1. Research methodology..6
 2.2. Study of three similar efforts..6

 a) VISTA, the vpo Interactive System for Tuning Applications..............................7
 b) EAVE, the Expert Adviser for Vectorization...8
 c) Matlab Code Analyzer...9

 2.3. Rationale and differentiators..9
 a) The compiler queries the programmer..9
 b) No separate interface..11
 c) Cooperation instead of assistance..11
 d) The filtered notifications..12

 3. Preparatory study..13
 3.1. The interview plan...13
 3.2. Conducting the interviews...15

 a) Problem solving...16
 b) Subsequent findings...17

 4. Three prototypes..19
 4.1. First prototype: a stripped version for GCC...19
 4.2. Second prototype: a communicative compiler...25
 4.3. Third prototype: a far-fetched alternative..28

 5. User study with the three prototypes..30
 5.1. A new round of interviews...30
 5.2. Findings and suggestions for future work..31

 a) The personae...31
 b) A few rules for composing the messages...32
 c) Transparency is crucial..32
 d) A proposed formula for the sorting and filtering of messages...........................33

 6. Discussion and concluding words...34
 6.1. Limitations..34
 6.2. Personal conclusions..35

 References..36
 Appendix A...37
 Appendix B...40

 1. Introduction
Compiling a program nowadays is simple. Once the source code itself is written, a
single action is needed to turn it to an executable file. With an Integrated
Development Environment (IDE) such as Eclipse or Microsoft Visual Studio, it is
synonym with clicking on a “ Build” button. With a command-line compiler such as the
GNU Compiler Collection (GCC), it is computed with a single command. Past the
errors and warnings, as soon as a working executable is output the compiler has
fulfilled its task; it will not provide any more interaction.

When it comes to optimisation, however, the procedure becomes trickier. By setting the
proper options and command-line flags, it is normally handled transparently by the
compiler, yet in practice this support is irregular (see Aho, Lam, Sethi, & Ullman,
2006, for a technical overview of modern compilers). While instruction scheduling and
register allocation are decently achieved nowadays1, improvements such as making
parallel loops or exploit the locality of memory accesses will require tuning specific
options, or the source code itself2.

On the other hand, a significant knowledge gap separates the programmer from the
compiler. For the former, the language syntax3, the diversity of architectures and
systems, and the basic skills required for a software engineer (Kreeger, 2009;
Lethbridge, 2000), are potentially overwhelming. For the latter, as quoted from Bose
(1988), the compiler is not designed to fully “ understand” the high-level, algorithmic
intentions expressed by the user in his (or her) source code.

As a consequence, it is believed that users do not obtain the performance and security
they should expect from their programs. During this Degree Project I investigated the
design and integration of feedback messages from the compiler, to leverage
opportunities of tuning and improve the user's mastery in software programming.

The data collected here is based on literature and user studies as well as my own
experience as a C/C++ programmer with a passion for performance. The focus will
therefore be on C++, as this general-purpose language is widely used in industry
nowadays. Furthermore, most of the examples in this work focus on improving
performance, though I have put many efforts in diversifying them.

1 With the example of GCC, see http://gcc.gnu.org/wiki/InstructionScheduling and
http://gcc.gnu.org/wiki/RegisterAllocation (both accessed 03.09.2012).

2 See the example of GCC at http://gcc.gnu.org/onlinedocs/libgomp/Enabling-OpenMP.html, and for Intel at
http://software.intel.com/articles/automatic-parallelization-with-intel-compilers/ (both accessed 03.09.2012).

3 Refer to the C++ specification, for example
(http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=50372, accessed 03.09.2012).

1

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=50372
http://software.intel.com/articles/automatic-parallelization-with-intel-compilers/
http://gcc.gnu.org/onlinedocs/libgomp/Enabling-OpenMP.html
http://gcc.gnu.org/wiki/RegisterAllocation
http://gcc.gnu.org/wiki/InstructionScheduling

 1.1.Problem definition
The compiler should extend interaction after the creation of a working executable, to
suggest opportunities of improvement, for example. Software such as Intel Vtune
Amplifier, SmartBear Aqtime Pro, or Microsoft Visual Studio Analyzer, can typically
provide this functionality. However, they are rather a collection of tools, and require
dedicated learning, yet I do not intend to dig the knowledge gap.

A proposed solution in this Thesis is to make the compiler output feedback messages,
pretty similar to the existing warnings and errors (Figure 1). Fundamentally, they
would provide information on the compiler's operation while parsing the source code,
on how it was “ understood” . In addition to suggesting code improvements, they could
assure that a hand-coded optimisation is unnecessary when it is transparently done by
the compiler, recommend the use of a little-known standard feature, or introduce and
recommend a compiler-specific feature. Refer to the prototypes further for more

2

Figure 1: Inclusion of a feedback in the stages of compilation

Source code

Syntax parsing

Language specific, machine
independent program tree

Language parsing

Language independent, machine
independent program tree

Abstract Machine
parsing

Assembling
& linking

Language independent, machine
specific instructions sequence

Executable file

Syntax errors

Grammar errors
& warnings

Analysis & conversion back
to language semantics

Hints &
feedback

Profiling information &
optimizations performed

Blocks of instructions &

optimizations performed

examples.

Beyond feedback, with a little more work the compiler could be able to directly query
the programmer, to suggest local tunings when the language semantics show their
limits. Think about the problem of specifying the underlying search tree structure of a
set object. Since the C++ standard library does not offer this choice, users must cope
with the default implementation shipped with their compiler. If the latter provides
several implementations though, it could probably be specified through pragmas (the
compiler-specific preprocessing instruction in C/C++), but again this would require
learning the particular syntax. An alternative here would be to generate a query with
radio buttons for the programmer, and automatically insert the correct corresponding
#pragma call.

Furthermore, thanks to the introduction of feedback, conditional compilation features
such as preprocessing and generics could be removed from programming languages.
Nowadays, compilers are capable of evaluating certain run-time expressions at
compile-time. With lack of information, however, users still resort to conditional
compilation to enforce the evaluation of expressions during the compilation phase.
Now, if a user is aware of which conditions trigger the former behaviour, it is no longer
necessary to separate run-time from compile-time semantics, leading to a lighter
language.

My work along this Thesis was thus dedicated to solving the following problem:

➢ How can compiler feedback be designed and integrated in modern compilers?

 1.2. Challenges
Many potential issues could be foreseen ahead of this work, this section lists them and
refers to the respective chapters where they are handled.

The biggest difficulty is certainly to properly identify the context, that is to output
messages which actually interest the users. Some might be concerned about
performance, some about security, some about memory usage, etc. The risk is that one
faulty message makes the user disable the whole functionality, as with the Message of
the day window (see the Preparatory study). To ensure a satisfactory level for
notifications, I rely on their technicality and transparency, as discussed in the
preparatory interviews and the prototypes' tests.

On the software side, relating a low-level transformation to the original source code is
a technically challenging task (shown as “ conversion back to language semantics” in
Figure 1), also the messages will certainly depend on the architecture and system
targeted. To satisfy this exigence of accuracy, a syntax for trigger conditions is

3

discussed starting with the first prototype.

Besides, a careless solution can be faced with numerous issues. Indeed, allowing the
compiler to suggest improvements, select the most valuable ones, or even query the
programmer, could be synonym with artificial intelligence. This is out of question here,
both because such a difficult solution would never be accepted among compiler
developers, and because it is contradictory with the requirement of transparency
introduced above. Moreover, the notifications are to be triggered after user input
(running the compilation), to sidestep the issues bound to random occurrences, as
highlighted in Carroll (1988). Indeed, it will avoid the frustration of receiving a
suggestion precisely after having figured it out, and the user will not be distracted by
the expectation of a new message.

As the reader can expect, for a reasonable project the amount of notifications
generated will be huge. Being of lower importance compared to warnings and errors,
they do not have to be displayed all at once each time a successful compilation is
performed. Instead, a formula is proposed to sort the messages and filter in the most
important ones, as discussed after the user study.

As a last point, the neutrality of messages is also a potential issue. It concerns how to
guarantee that the assumptions and figures argued are accurate. To tackle this
challenge, a source will systematically be cited, providing a hypertext link wherever
possible. In addition, the author (or organisation) might be explicitly bound to each
message, as discussed in the end of this thesis. Nevertheless, a subjective point-of-view
is somehow desirable, as it will reflect the advices (and perhaps the personality) of the
interface designer.

 1.3. Method
The structure of the thesis was based on Saffer (2009) proposed methodology, to avoid
overlooking such crucial steps as the search for differentiators, and the analysis of the
data gathered from the preparatory interviews. I chose to focus on User-Centered
Design, to extensively query different programmers so as to balance my biased passion
for optimising. My main concern was indeed that users would not be interested in
refining their code, and that they could disable the compiler feedback for the lack of
short-term usefulness.

The thesis starts with a comparison of three previous similar works. The problem of
improving the accessibility of profiling and optimising is not new, one should thus
ensure that their findings and pitfalls are acknowledged, and clearly identifying how
this work will take a different approach.

The preparatory interviews which followed were intended as an occasion to observe

4

different users program, and the difficulties for which they would appreciate help. I
was not looking for an open solution though. Instead, the goal was already set –
introducing a compiler feedback – and I was willing to shape it as best to satisfy and
help the users.

Though initially unplanned, I chose to apply for a Google Summer of Code during this
Thesis work. This annual event is an opportunity for students to contribute to an open
source project, while being paid. It is mentioned in this report since it greatly helped
the definition of the first prototype, both technically and for its design. This was
followed by two other prototypes, supplementing with alternate solutions to introduce
compiler feedback.

A series of tests was then carried during a new user study, so as to gather helpful
comments for further iterations. The prototypes being non functional though, I did not
deem useful to actually refine them, and focused on wording the last key
differentiators.

It should be noted at last that I used the results from previous personal studies –
namely the enumeration of the design aspects of C++, and a list of ideas for feedback
messages gathered during several months of programming – as a basis for the
enumeration of suggested messages.

5

 2. Related work
This chapter covers the study of previous similar attempts and the resulting
highlighting of improvements brought by a compiler feedback, in order to ensure its
competitiveness.

 2.1. Research methodology
The gathering of reference papers received a careful attention during this Degree
Project. It mainly consisted in browsing the archives of a few Special Interest Groups
(SIG) on the online portal of the Association for Computing Machinery, plus a
thorough keyword search on Google Scholar. Some papers were also found by following
cross references. The scope being potentially broad, various interest groups were
targeted:

➢ The group on Computer-Human Interaction (10 years of Transactions on
Computer-Human Interaction)

➢ The groups on Computers and Society, Computer Science Education, and
Information Technology Education (5 years of SIGCAS archives, 5 years of
SIGCSE Bulletin, and 10 years of SIGITE Newsletter)

➢ The group on Algorithms and Computation Theory (5 years of SIGACT News)

For the sake of completeness, here are the keywords which were used to search on
Google Scholar: static profiling [visualisation], optimisations visualisation, compiler
[interface], [serendipitous] programming learning, embodied interface, programmer
improvement, programming best practices, recommender system/agent, [interactive]
program improvement.

 2.2. Study of three similar efforts
The problem of improving the interface of compilers has existed for many decades now
(see Bose, 1988, presented further), and various solutions have been proposed. Let us
present three related approaches, and distinguish how each could be improved.

6

 a) VISTA, the vpo Interactive System for Tuning Applications
VISTA (Zhao et al., 2002) is a system targeting embedded applications, for which
assembly optimisations are often necessary to ensure speed, low power consumption
and decent size of the executable. Along with a graphical visualisation of the Register
Transfer Language (RTL), the user can reorder the code improvement phases,
manually specify code transformations and profile the different compiled versions for
comparison purposes (Figure 2).

However, the interface should give clues as to which particular orders of
transformations usually provide descent results. To actually improve the program's
performance, the user has to undergo a lengthy trial and error, testing all
combinations of passes.

Additionally, the designers are asserting that the users are already familiar with the
optimisation techniques involved. While as embedded applications' programmers they
should certainly own some knowledge, it is extremely unlikely that they are familiar
with all of the presented techniques. It is too easy to assume that the programmer has
access to a book, a course or any relevant reference document, as is too easy to expect
that he/she will actually have the will to browse it.

As for the RTL, it is as expanded a translation of the source code as the resulting
assembly code is. Understanding it and verifying the expected interpretation is finally
equivalent in time to writing the assembly itself. The interface should instead be
relating to the original source code.

7

Figure 2: Interface of VISTA, as presented in Zhao et al., 2002

 b) EAVE, the Expert Adviser for Vectorization
EAVE (Bose, 1988) is a helper agent designed for programming in Fortran on the IBM
3090 VF computer. Its purpose is to help programmers achieve near-peak performance
by advising the proper loop constructions which the compiler will vectorise or
parallelise (Figure 3).

However, the interaction with the agent is lengthy. One has to provide the source code,
point the loop to be analysed, then run the analysis. Moreover, this obligation to
request feedback prevents opportunistic improvements to be detected and suggested.
The user would probably learn the advices quicker by reading a dedicated book.

Also, though the authors of EAVE recognise a knowledge gap between the programmer
and the compiler, the primary focus is on fixing the source code rather than targeting
the very user's knowledge. By informing exclusively on code hacks, the user is tied to a
specific compiler/architecture. Since this platform is to evolve over the course of time,
this solution is not viable in the long term.

Besides, the system limits analysis on a single loop, and only treats vectorisation. If
the programmer were to run the analysis on the entire source code, with advices
covering a broader spectrum, there would be thousands of messages output. It would
probably be too many for the user to focus on, thus the need to introduce a filter.

8

Figure 3: Excerpt of EAVE's interface as presented in Bose, 1988

 c) Matlab Code Analyzer
This solution from MathWorks was suggested during one of the interviews, and is in
my view the closest to the purpose of this Degree Project4. The messages focus on
relevant problems, highlight the responsible code line and clearly state how to resolve
it, while explaining the causes behind it (though not shown in Figure 4, some
notifications display a button to expand the details).

However, as with EAVE, there is no handling of the amount of messages. As a
consequence, the assistant includes only the most important ones. Furthermore, it
deprives itself from a simple feedback which could inform the user that a portion of
code was fully understood.

In addition, the interface cannot query the programmer, nor can it be queried itself.
Even a rudimentary polling of the user would enable setting parameters which cannot
be expressed as code, as discussed in the Problem definition.

 2.3. Rationale and differentiators
Thanks to the analysis of these similar works, a few differentiators were identified, so
as to make this thesis a conceivable choice for real-world development environments.

 a) The compiler queries the programmer
Interfaces such as VISTA and EAVE rely on their design to guide the programmers
into optimising each and every aspect of their code, but without a filter to select the

4 http://www.mathworks.se/help/techdoc/matlab_env/brqxeeu-151.html#brqxeeu-155 (accessed 07.09.2012).

9

Figure 4: Example of message from Code Analyzer, as show on Matlab's website4

http://www.mathworks.se/help/techdoc/matlab_env/brqxeeu-151.html#brqxeeu-155

important transformations the interaction is lengthy. Matlab Code Analyzer does a
little better by spontaneously enlightening the areas of interest, but focuses only on
fixing issues in the code. This thesis proposes to go two steps further, by adding
positive feedback and the possibility to query the programmer for precisions on a
portion of code.

More specifically, interaction with the programmer can be divided into four distinct
tasks. The compiler should be able to:

➢ inform: tells how well a portion of code was compiled, introduces a compilation
technique, relates a coding practice, promotes a feature from the standard, etc.

➢ alert: incites the user to correct a supposed flaw, notifies about a potential
vulnerability which could arise with further lack of attention, recommends a
performance tweak. This is the task at hand in Code Analyzer. As opposed to
the previous task, here we demand some code to be fixed. Also, the difference
with standard unfiltered compiler warnings is that they concern code which
might not execute with the intended meaning, though here only tuning of a
working program is concerned.

➢ ask: inquires a clarification about a portion of code. Sometimes a warning is
insufficient, when the clarification cannot be expressed by updating the code. In
cases like choosing the implementation of a tree structure (set or map in C++) or
the character set (Latin-9, UTF-8, etc.) of a string object, the interface could
trigger radio buttons to query the programmer.

➢ answer: responds to a direct interrogation from the user. The requirement for
artificial intelligence is not discussed in this document, though an attempt to
test its design was made further in the second prototype.

The third task is quite interesting, as it can relieve the user from the complexity of

10

Figure 5: On the left image, arrows indicate who initiates the communication. On
the right one, lines bind each task to which data is discussed (a dotted line
indicates the data is not intended to be modified).

Programmer

Compiler

in
fo

rm

al
er

t

as
k

an
sw

er

inform
Source code

main semantic

Compilation data
detailed semantic

alert

ask answer

tuning the whole program. Through a selection heuristic, the compiler could request
intervention on the most critical parts of the program, setting the rest to default
parameters. Furthermore, it would allow languages to be designed with two levels of
semantic: main and detailed (Figure 5). The main semantic would be expressed as the
source code itself, as with standard languages. The detailed semantic could be
accessible through menus in the IDE, or comments in the code, and would be used by
the selection heuristic to generate queries.

 b) No separate interface
VISTA, EAVE, and to a greater extent profiling tools in general provide the
performance analysis and suggestions of improvement as an interface distinct from the
editor. This requires the users to learn how to use it, and this knowledge acts as a
disincentive on their commitment to start profiling. Here we will make the messages
appear besides the relevant source line, as in Code Analyzer.

No interface has to be learned here, the only limit to the user's will to tune the
program is the clarity of the messages, which is discussed further in this thesis.
Moreover, such an interface can be easily implemented. In practice a compiler like
GCC already outputs the line number along with every warning and error, and an IDE
such as Eclipse is able to display warnings and errors in relation to the targeted line.
This also helps the context to be accurately identified.

 c) Cooperation instead of assistance
VISTA, EAVE and to a lesser extent Code Analyzer illustrate what an assisting agent
is: it waits for the user to request help, it does not query him/her, and it focuses on
helping the user fix an issue rather than improving his/her knowledge. By contrast, a
cooperation is similar to a discussion, in which both interlocutors can engage the
conversation, ask questions and answer them. Moreover, there must be no assumption
that the programmer is familiar with any of the concepts involved. Contrary to VISTA
and EAVE which refer to the optimisation techniques by their names, here the tasks
will give a short explanation and always cite their source, so that the user is never
responsible for owning the proper reference.

This is actually not meant as a human-machine cooperation, since no artificial
intelligence is intended. Instead, it is the designer behind the interaction tasks who is
cooperating with the user. As observed in the Challenges, the feedback messages and
the selection heuristic will embody the designer's point of view on how to improve a
program. Users Need Rationales, as Carroll and Aaronson (1988) state, and a liberty
for arguing is a decent mean to satisfy it.

11

 d) The filtered notifications
In a simple technical design such as the first prototype shown further, or in Code
Analyzer, a single pass on the code generates notifications to be displayed in the
development environment. For simplicity, let us call messages the questions from the
third task ask too. In EAVE and Code Analyzer, the suggestions generated all have
critical importance, however we want to consider every possible feedback here. To
avoid burdening the programmer with countless notifications, only a handful should be
selected to be displayed at each build. Furthermore, provided the system remembers
the messages already displayed so as to prefer new ones, the notifications could seem
spontaneous. The programmer would then discover the suggestions at his/her own
pace, skipping them when not ready.

Besides, for the sake of transparency and to allow users to retrieve missed feedback,
the full list of published messages must be available, that is all the notifications
generated, before they were filtered to keep a handful. This list, as well as the
heuristic used to choose the displayable messages, are briefly covered in the Findings
and suggestions for future work.

12

 3. Preparatory study
At this point, a series of interviews was necessary in order to evaluate the users'
preferences regarding the contents of the messages, and ensure there would be no
clear rejection of “ improvements” to compilers.

 3.1. The interview plan
Since the questions were to refer to how people program, I chose to start with a simple
algorithmic task. Being in familiar working conditions, the interviewees could then
share their interrogations through a think aloud, and I would later ask how they
usually manage their other programming projects.

The purposes of the interviews were:

➢ to poll the receptiveness of users regarding the introduction of a feedback, and
their presumptions about how a discussion with the compiler could look like,

➢ to confirm that all users – even experts – have an incomplete knowledge about
programming, which lets them miss a few opportunities of improvements,

➢ to gather the resources they rely on when they need to learn,

➢ to observe their use of their own development environment and reflect on how to
integrate a compiler feedback,

➢ to query the feasibility of an embodied agent to support the communication.

For this study I needed participants with experience in programming. I thus selected
KTH peers whom I knew had such experience. Each interview would be conducted on
a platform the participant would be familiar with, be it his/her laptop or a school
desktop computer. I would sit next to the interviewee and give the instructions and
questions while he/she had the IDE in sight. This proximity was meant for an open
discussion to help the think aloud. To compensate the possible stress of having
someone watch over their shoulder, the problems were overly simple, and I would
insist on the absence of competition or comparison of performance between the
different interviews.

Three problems were written, so as to cover a broader range of expertise, on three
distinct typical goals in programming: performance, security and
maintainability/extensibility. The interviewees were to solve the problem first without
knowledge of the goal, then they were asked how they would optimise it according to
the corresponding goal. The problems would be given in any order, usually two in an
interview, so as to fit in 40 minutes. The performance problem was always given, and

13

the second was chosen to match the experience of the interviewee so that he/she could
solve it quickly. Refer to Appendix B for the interview sheet actually used.

For the performance version, the code was initially intended to contain: a loop or
nested loops (to expose the many possible optimisations related to loops), a
multiplication by the loop index or a constant (to expose Strength Reduction
techniques), and the possibility to reuse some intermediary computations.

The problem statement became: Write a function which receives a 100x100 array t and

three integers a, b and c, and compute t [i][j]= i∗2
a
+ j∗b
c

 (See Figure 6).

For the security version, the code was initially intended to contain: a buffer copy with
assertion on the size (to expose a possibility for Buffer Overflow), the call of an
untrusted function (to expose the checks for inputs and outputs), the need for a
random number (to expose the weaknesses of pseudorandom number generators), and
an integer computation which could overflow.

The problem was finally stated as: You are writing a simple login program. Start by
reading a 64-character ID and a checksum from standard input. Then call login(ID),
which returns the user name found in database. At last, compute the sum of its
characters and compare it to the checksum. If it matches, print “ Welcome [user]” (See
figure 7).

14

Figure 6: Example solution written in C

void init(int t[100][100], int a, int b, int c) {
for (int i = 0; i < 100; i++) {

for (int j = 0; j < 100; j++) {
t[i][j] = (i * pow(2, a) + j * b) / c;

}
}

}

Figure 7: Example solution written in C

char ID[65];
int checksum;
scanf("%s %d", ID, &checksum);
char* user = login(ID);
int sum = 0;
for (char* c = user; *c != 0; c++)

sum += *c;
if (sum == checksum)

printf("Welcome %s\n", user);

For the maintainability/extensibility version, the interviewee would design a class,
which was initially intended to contain: the need for 64-bit variables, the storage of a
string (to expose the choice to make it statically or dynamically sized), the need to
store booleans (either in separate variables, or in a dedicated object), the use of
constants (which can at least be defined either as compile-time or run-time constants),
the implementation of optional fields (to expose the use of common fields, or class
polymorphism), and the possibility to use different error models (either by functions
returning error codes, or the use of exceptions).

The statement for the problem became: Your client is a web site locating all shopping
places in the world. Your task is to design the data structure(s) needed to store them.
Only a subset of the typical fields is required: a country code, the name, whether it has
a shoe shop/restaurant/barber shop, and whether it is a mall or a shopping street. For
malls, we store the number of shoppers per year, and for shopping streets the delimiting
street numbers (See Figure 8).

 3.2. Conducting the interviews
Five interviews were carried over a month at KTH, each one lasting from 40 minutes
to an hour. The interviewees had pretty different profiles, as shown in Table 1. This
broad range helped to mitigate the low number of interviews which was due to the
difficulty to schedule such a lengthy meeting.

The first finding to note is the average programming experience of 9 years, and 2,5
years on average in their current language. None of the participants were amateurs,
and this gives weight to the persistence of misconceptions and interrogations shown
further.

15

class Shopping_place {
enum { GBR=44, SWE=46 } country_code;
char name[100];
bitset<3> contains;

};
class Mall: public Shopping_place {

long long shoppers_per_year;
};
class Shopping_street: public Shopping_place {

int street_begin, street_end;
};

Figure 8: Example solution written in C++

 a) Problem solving
The Performance problem was given to five participants, the Security problem to three
participants and the Extensibility problem to two participants. Since I was present to
give further explanations, the instructions were well understood, the interviewees
writing a quick first draft before trying to optimise it.

When asked to optimise the first problem, only one participant proposed a systematic
approach, namely taking advantage of the variables' properties (mostly constness
here), and analysing the assembly output. All the others resorted to guessing tips and
tricks. Another participant was aware of cache locality and the influence of looping
order, but could not tell how to improve it. Surprisingly, only one interviewee knew the
binary shift trick for multiplication by a power of two (replacing i*pow(2, a) by
i<<a). Some had difficulties to remember the proper syntax and library calls, as for
the C pow function, or how to pass an array as a function argument.

Though not presented as such, the second problem was meant as a collection of traps
for the participant to find. The success was not to be measured by how many were
found though, as a single weakness compromises the whole program. Only the student
in Security found them all with a generic approach, namely securing the

16

Table 1: Summary of the results from the interviews

Aurélien Alexandre Mikael Léo Siim

Field Networking Cryptography Robotics

Language (IDE) C++ (Eclipse)

yes (yes) yes (yes)

Numerical
Analysis

Software
Engineering

Java
(Eclipse/Geany)

C++
(Vim & GCC)

C/C++
(emacs & GCC)

Delphi
(CodeGear)

Experience (in
main language)

8 years
(4 years)

10 years
(6 months)

11~12 years
(9~10 years)

4 years
(3 years)

11 years
(3 years)

Target when
programming

readability,
simple design,
durability in
the long term

working code,
readability,
simple code for
maintainability

re-usability and
extensibility

readability,
maintenance,
factorising

working code,
readability,
extensibility,
simple design

Can improve
his projects?
(himself?)

yes, with more
time (yes)

yes, also spend
more time (yes)

definitely, and
time also (yes)

Resources
browsed

C++ standard,
books, Google,
Sun guidelines,
Parashift FAQ,
articles

courses, books,
communities of
good practices
like Symphony

wandering on
the Internet for
small fixes

Google, Stack
Overflow

a good book on
Delphi, hands-
on, Google

Preferred
interaction

compiler's
output read by
the IDE

underlining and
tooltips in the
code

he initiates it,
tree-like
conversation

enabled with a
flag, suggests
after compiles

messages like
in Matlab, with
a Fix button

communication with the database, using a cryptographic checksum, checking the
inputs and multiplying the layers of security.

The third problem was a little harder to exploit. Lengthier to explain in practice, it
was given to too few participants. Consequently I could only gather a few
interrogations to be answered among the messages.

One could argue that asking a quick working draft then its optimisation induced the
production of sub-efficient code in all three problems. This is however meant as a
reflection of the IT industry. Indeed, delivery of working software under tight schedule
is at the core of the Agile development method5, for example. The interviews showed
that people perform hardly well at optimising code, the interface should thus provide
help to produce efficient working code at first draft.

It also appeared that proper optimisation is not barely a matter of time. One has to be
an expert in the specific field corresponding to the specific aspect targeted. This leads
to projects centred around one aspect, the others becoming sub-efficient. A perfect
example is the BSD family of operating systems: FreeBSD (performance), OpenBSD
(security), NetBSD (portability)6. The interface should thus help to compensate where
users lack expertise.

 b) Subsequent findings
To the question about the usual target when programming, readability was the most
common answer. “ Code that just works” was favoured by two interviewees. Apart from
these, there were very different goals, as expected.

At many times I asked the interviewees how they thought the compiler was carrying
an operation, and they showed interest in the answer as they had already been
wondering it. Such questions were for example: “ Does the compiler automatically
unroll loops? At which optimisation level?” , “ Does it enable protection against buffer
overflow?” , “ Does it actually store constants as memory variables?” . The existence of
such unanswered interrogations which somehow haunt the users, calls for
serendipitous information retrieval (De Bruijn & Spence, 2008). The interface should
output several different messages at each execution and cite a source in each one, so as
to expose the user to much information, that potentially answers a dormant
interrogation. Moreover, for the same purpose the messages should be the shortest,
and the number of sources limited to one.

All participants admitted that they could still improve their projects, and that they
5 Refer to the first, third and seventh principles at http://www.agilealliance.org/the-alliance/the-agile-

manifesto/the-twelve-principles-of-agile-software/ (accessed 07.09.2012).
6 For a brief history and comparison of the three systems, see http://www.freebsdworld.gr/freebsd/bsd-family-

tree.html (accessed 07.09.2012).

17

http://www.freebsdworld.gr/freebsd/bsd-family-tree.html
http://www.freebsdworld.gr/freebsd/bsd-family-tree.html
http://www.agilealliance.org/the-alliance/the-agile-manifesto/the-twelve-principles-of-agile-software/
http://www.agilealliance.org/the-alliance/the-agile-manifesto/the-twelve-principles-of-agile-software/

had to improve themselves. Many use programming books as references, and all use
Internet for occasional problems. The goal of this question was to observe how much
the Web is used as a programming reference. While there is no control over the quality
of the advices found there, the interface could use the source links in the notifications
to reference serious documents.

The interviewees were neutral regarding the possibility to be queried by the compiler,
but mostly opposed the idea to embody it, since it would not look like a serious
interface.

When observing those using an IDE, I noticed they were all disabling the Message of
the Day tooltip at startup. The reasons they gave were:

➢ Much of the information displayed documents basic functionalities.

➢ The first few messages are not teaching anything.

➢ They are not contextual, nor are they relevant.

The first note motivated the requirement for technicality of the messages, that is they
should always seem relevant, not worth being disabled, even if they will be quite
complex. The source link can then provide the necessary details to users willing to
follow it. As for the third note, it instructs to avoid citing what the compiler can do in
general, in favour of informing what it will do on a particular line of code. Thereby, the
feedback is closest to the context which triggered it.

18

 4. Three prototypes
As advocated in Dow et al. (2010), I chose to design several prototypes in parallel, each
embodying a distinct approach to the solution. This work does not include their
iterations though, which are discussed in the next chapter.

 4.1. First prototype: a stripped version for GCC
As part of this project, I seized the opportunity to imagine how would a real-world
compiler be modified, by applying for a Google Summer of Code for GCC. The purpose
was to confront the actual difficulties which can arise when attempting to implement
such an interface. Below is the proposition submitted to the mentors at GCC:

19

Figure 9: My Google Summer of Code proposition which led to the first prototype

Title: Provide optimizations feedback through post-compilation messages

GCC currently provides no concise way to inform the user whether it applied an expected optimization (i.e. it
"understood" the code). As a result, some will do premature optimizations when they do not trust the compiler,
and some others will create overly convoluted code with blind belief in the compiler. This is especially relevant for
users non-initiated to the internals of GCC.

The project I would like to propose is a feedback for the optimizations performed by GCC. To avoid binding users
to the compiler, I would focus on some very standard optimizations across vendors, or for some specific yet nice
features I would indicate their specificity to GCC/an architecture.

The feedback would be triggered when compilation is successful, and display a couple of different messages each
time it is run:

gcc --feedback test.c
test.c:xx:x: info: All operands being constant, constant folding was applied to assign
'2560' to 'a'
test.c:xx:x: info: GCC could not fold constants here because...
test.c:xx:x: info: As integers are stored in binary format, strength reduction was
applied to replace '* 8' by '<< 3'
test.c:xx:x: info: Basic block vectorization was applied to pack the 3 independent
additions into a single SIMD instruction
test.c:xx:x: info: GCC implements unordered_map as open-addressed hash tables, with
double hashing probing

As a difference with the internal verbose messages, here they would form a set, and the system would remember
those already displayed and decrease their frequency of occurrence between compilations. All messages would
explain what triggered them, cite the optimization name, and describe the consequence.

Though optimizations are the most obvious purpose of the feedback messages, the project has a broader scope:
output any relevant short piece of information (may it be the implementation of STL containers, or putting light
on an unknown aspect of the standard for example).

As for the work plan, it would consist in:
_ Enumerating all possible messages in the messages set.
_ Implementing a function receiving feedback from each optimization unit and choosing whether to display it:
info_printf(enum INFO_INDEX, const char*, ...);
_Write a formatting guide for adding messages in the set.

Without a proof of concept in terms of code, the proposition was rejected. Nevertheless,
the challenges having been identified and a working solution proposed, a prototype
was finalised, using HTML5, CSS3 and JavaScript for the neat look and interactivity
they provide7 (Figures 10 and 11). It represents the IDE frame where code is edited,
and focusses on the interaction tasks inform and alert, both identified by two distinct
margin icons. Note that the sample messages presented in all three prototypes are not
meant to be true for any particular compiler, they simply look technical and precise.

7 The first prototype is available online at http://www.csc.kth.se/~traf/thesis/proto1.html.

20

Figure 10: Screen from the first prototype7 showing the messages in
command-line output before they are rendered by the IDE.

http://www.csc.kth.se/~traf/thesis/proto1.html

Relating each notification to the relevant source code line is not usually a problem. All
major executable file formats being able to store debugging information including line
numbers8, a compiler such as GCC keeps track of the original line numbers at any
time.

There are two approaches to make the compiler generate the messages. The first one is
suggested in the proposal in Figure 9. It would consist in having each optimisation
unit store its own messages and output them when it executes, using a dedicated
info_printf function. This has the advantage to provide the best precision of
feedback: the compiler informs on its operation at the very moment it does it, without
speculation. However, the messages are then tangled inside the compiler's code,
preventing the addition of new ones and impeding any desirable transparency of
operation.

The second approach would consist in storing all possible messages separately from
the compiler. Each notification would then be stored as a pair {text, trigger}, the latter
being a condition on each instruction processed which enables the output of the

8 For PE/COFF (.exe) format, refer to The .debug Section in
http://www.microsoft.com/whdc/system/platform/firmware/PECOFF.mspx, for ELF (UNIX), see Line Number
Information in the DWARF specification at http://dwarfstd.org/doc/DWARF4.pdf, and for its ancestor Stabs at
http://sourceware.org/gdb/current/onlinedocs/stabs.html#Line-Numbers (all accessed 04.09.2012).

21

Figure 11: Screen from the first prototype showing an alert message.

http://sourceware.org/gdb/current/onlinedocs/stabs.html#Line-Numbers
http://dwarfstd.org/doc/DWARF4.pdf
http://www.microsoft.com/whdc/system/platform/firmware/PECOFF.mspx

corresponding text. It would require the definition of a syntax for trigger, which is
beyond the scope of this thesis. This approach is the one I would recommend though,
as it would allow the messages to be written for several compilers, and storing them in
files would permit their sharing among users, as discussed further.

The most important task along with designing the interface was to provide an
exhaustive list of possible messages, to give a clearer idea of its usefulness. In order to
manage the enumeration, I focused on the standard optimisations performed among
most modern software:

➢ Register Allocation (explaining how faster an operation is performed in
registers, telling whether for an inner loop or a function all automatic variables
could be stored in registers or spilling happened, citing the allocation technique
used, informing which conditions allow a data structure to be stored in
registers)

➢ Strength Reduction (indicating when a multiplication by a loop index was
carried with an addition, warning about the use of floating point functions on
integers and propose alternatives, showing the replacement of multiplications
with powers of 2 by binary shifts)

➢ Common Sub-expression Elimination (informing where an expression was found
to be redundant and how the code was replaced, enumerating which operations
are taken into account in CSE)

➢ Value Range Propagation (telling when a constant has been properly
propagated, showing that the detected range of values for a variable leads to a
performance gain, enumerating which types can be propagated by the compiler,
citing the Static Single Assignment technique)

➢ Branch Prediction (informing when a dead section was detected and will not be
compiled, showing how branch probabilities translate into code and how
performance improves, suggesting the use of a profiler)

➢ Functions Optimisations (telling when and why a particular function was
inlined, informing about the compilation flags toggling inlining, warning when
too many variables are passed to a function as the registers are limited, telling
whether Tail Recursion could be applied on a recursive function, describing how
complex objects like classes are passed as arguments and returned)

➢ Data Alignment (explaining why the size of a structure can be bigger than the
sum of its fields' sizes, telling in which case padding was added inside a data
structure, informing about the performance penalty when accessing unaligned
data)

22

➢ Stack Layout (pointing which variables are stored on the stack, giving figures as
to how performance increases with such storage, proposing buffer overflow
protection techniques and informing which flags enable them, giving the typical
stack size on the target system)

➢ Vectorisation / Parallelisation (indicating whether and why a loop could be
vectorised on a SIMD-capable architecture, describing how to best control
vectorisation through flags and tools, providing figures as to how performance
increased on a loop with the use of SIMD instructions, telling whether several
similar operations could be packed in a single instruction, suggesting
parallelisation libraries to execute simultaneous iterations on parallel threads)

I also focused on the various aspects of a language design (mainly C++) to enumerate a
few more topics for feedback messages:

➢ Manipulation of files (explaining the difference in performance/cache
use/security between the various input/output functions, pointing out the origins
of buffer overflows and the means to avoid them)

➢ Time management (warning about the year 2038 problem and discussing means
to circumvent it)

➢ Strings and characters (providing a comparison between null-terminated and
sized strings, explaining how the fast character testing and copying functions
translate into code)

➢ The use of assertions (giving figures as to how enabling assertions impact
performance, telling whether assertions are used for value range analysis)

➢ Style and formatting (warning when a function is too big that it would not fit in
a cache, citing which character set was detected for the source file and how
strings are stored in the output, here the messages can greatly depend on the
designer)

➢ Run-time checks (enumerating the list of available checks and the flags
enabling them, informing when such checks have been inserted and their cost)

➢ Classes (showing when constructors and destructors are inlined, giving the
number of system calls involved in the use of dynamically sized objects,
describing the actual implementation of standard complex classes like bit-fields
or hash tables, telling which operations will leave a certain iterator stable)

➢ Functions (introducing the overhead of a function call, describing which
registers a particular function saves/uses)

➢ Data storage (explaining where in memory a particular static/automatic

23

variable will be stored, informing where in memory constants are saved,
introducing endianness and why one should care about it, suggesting faster
initialisation methods like memset)

➢ Floating point types (warning about the use of equality with such variables,
describing the range of acceptable values including subnormal numbers and the
expectable precisions)

➢ Operators (telling how certain ambiguous operations like integer division
behave with negative operands, comparing the speed of an addition versus a
multiplication on the target architecture, warning when an apparently small
operation like a norm has a non-negligible cost, informing about the possibility
of integer overflow and proposing various means to avoid it)

➢ Control flow structures (explaining how switch statements are converted into
code and their performance benefit)

➢ Exception handling (introducing how this mechanism is translated into code,
citing which types of exceptions are the most easily dealt with by the compiler)

These lists are certainly not exhaustive but already give a strong basis of feedback
messages the interface could implement.

24

 4.2. Second prototype: a communicative compiler
A second prototype was designed to complement the feedback side with the possibility
to query and discuss with the programmer, corresponding to the interaction tasks ask
and answer. It requires a dedicated frame in the IDE's workspace to display the
queries9 (Figures 12, 13 and 14).

After a successful compilation, the second frame displays a set of spontaneously
generated queries. As with the first prototype, these notifications will change each
time a compilation is run. Answering them is never required, they will default to safe
values.

Technically, this prototype requires a compiler-specific semantic to express the
answers to queries. As an example, clicking “ Proceed” on the question in Figure 13

9 The second prototype is available online at http://www.csc.kth.se/~traf/thesis/proto2.html.

25

Figure 12: Screen from the second prototype9, showing a query
spontaneously submitted by the compiler.

http://www.csc.kth.se/~traf/thesis/proto2.html

could add #pragma rand substract_with_carry before line 12, effectively giving
this hint for the next build run.

Triggering these messages would then be similar to the first prototype. With the
second approach in mind, they would form the triplets {text, trigger, pragma}, where
text would be formatted to generate a query, and pragma would contain the text added
to the source code after answering the question.

Furthermore, the messages could be independent from the compiler if such detailed
semantic was part of the language standard, as advocated in the previous section
Rationale and differentiators. They would then benefit from the same possibility of
sharing among users as in the first prototype.

26

Figure 13: It is also possible to click the elements in the editor to edit
them, and bypass the suggestions if unwanted.

Enumerating the messages to include in such an interface is not as straightforward as
for the first prototype. It requires seeking the aspects of a language semantics which
are incomplete. For C++, I focused on the aspects which would benefit from the
increased expressiveness without burdening the main semantic:

➢ Choosing the character encoding of a string or stream, which will influence
functions such as strlen or isspace

➢ Setting the locale of the program, since in the current C standard a single
library is dedicated to it

➢ Asserting that a certain variable will never overflow, which could enable certain
optimisations

➢ Choosing the algorithm behind certain mathematical operations such as
computing the inverse square root, while giving the precision of each

➢ Querying the expectable branching probabilities in a critical portion of code

➢ Asking whether to maintain an assertion in release mode when some sample
cases show its failure

➢ Gathering the properties of an variable read from a stream, to enable the use of
faster routines

➢ Selecting the algorithm to sort an array, the default being usually Quick Sort

➢ Setting the precision for the storage of time or delays

➢ Selecting the implementation method to generate random numbers (in C++ a
library is dedicated to it, though in C it is a single function)

➢ Choosing the underlying storage of an array of bits (in C++ it is stored as a
bitset though it sacrifices performance in comparison with an array of
integers)

➢ Setting the properties of a container (the implemented directions of iteration,
whether the size often increases, where items are appended, whether stable

27

Figure 14: The last suggested frame shows a field for discussion with the
compiler. The talkbot behind it is not configured to be functional though.

iterators are required)

➢ Asking for the implementation method of a binary tree or a hash table

➢ Proposing the stack protection method against memory corruption including
buffer overflows

These semantics being optional, they must not have critical importance on the
program. They will rather be set to tune its various aspects, when the program was
already proven to work properly. As with the previous prototype, this list is certainly
not exhaustive, but it gives an insight for the usefulness of the querying improvement.

 4.3. Third prototype: a far-fetched alternative
This prototype goes one step further in the coupling between the compiler and its
interface10 (Figures 15 and 16). It uses a second frame to graphically represent the
compiler's understanding of the various elements found in the code. It was mostly
intended as a place for open suggestions from the testers, and is not to be matched
with the interaction tasks previously mentioned.

Having noticed in the interviews that users had a will to do good despite their refusal
of an embodied interface, I chose to depict the compiler as a living system. The

10 The third prototype is available online at http://www.csc.kth.se/~traf/thesis/proto3.html.

28

Figure 15: Screen from the third prototype's second frame10.

http://www.csc.kth.se/~traf/thesis/proto3.html

interaction then consists in the user helping the compiler understand the code, a
simple colour scheme being used to inform how an element is apprehended. The two
frames are representing the code textually, however the bottom one should evolve
towards a more suitable representation, such as a coloured dataflow diagram.

29

Figure 16: The colours were banned from tooltips, so as not to become too invasive.

 5. User study with the three prototypes
After creating the parallel prototypes, a quick round of testing would give further
direction as to how they should evolve, as well as a few technical precisions.

 5.1. A new round of interviews
This new series of interviews was intended to ensure the goals set after the first
gathering had been met, and estimate how users were considering the value added. In
order to gather more participants, the testing would last 20 minutes. The requirement
was no longer that participants had a decent experience in programming, they would
instead have familiarity with an IDE, and understand basic C++. In addition, to avoid
considering the influence of being already familiar with compiler feedback, I chose to
interview participants different from the preparatory study. The context was identical
however, each interview taking place at KTH, while I would sit next to the participant
and ask questions about the prototypes at sight. After testing the three prototypes in
order, the interviewee would choose his/her favourite and explain why, then answer a
few last questions about the use of personae (see the next dedicated section). Refer to
Figure 17 and Appendix B for the test sheet used. Choosing to test the prototypes in
order was actually meant to help introducing the idea of compiler feedback. Indeed, it
was a concept rather than a finished prototype which was tested here.

30

Figure 17: The panoply of a tester hunter

Five tests were conducted over two weeks, polling random students at KTH. Both the
first and the third prototype were praised, the former for the technical insights, the
latter as a quick overview of the compiler's job. As with the preparatory study, few of
them were initially showing interest in a feedback from the compiler. I had to pursue
the description to the personae, until the concept of compiler feedback became clear
and coherent. Then they all agreed that they would not disable it like a Message of the
Day, which was my main concern. In addition, some expressed they were actually
looking forward to seeing a working release in the future.

On the downside, the second prototype was generally little understood. This might
have been influenced by the unusual situation of being queried by the compiler.
However, in my opinion it was the presentation as a separate frame which made it
difficult to spot the context at hand, that is which part of the program the question
was dealing with. The last discussion frame, corresponding to the interaction task
answer, received the same reception. For lack of example questions and because of the
unrelated answers the talkbot was returning, this aspect of the prototype was not
understood. The integration of queries as in the first prototype then remains to be
tested for future iterations.

 5.2. Findings and suggestions for future work
Thanks to the feedback gathered from the testers, a few additions are proposed for
future work on the prototypes.

 a) The personae
This idea appeared with the possibility to store messages in files, as discussed in the
first and second prototypes. Provided a trigger syntax is defined, each notification can
be stored aside the compiler, under a triplet {text, trigger, [pragma]}. Sets of
notifications can then be stored as files, forming categories of similarly related items.
The addition of a field along every message of the first prototype could further allow
the programmer to be aware of the category at hand, and increase or decrease its
further occurrences, in order to receive the most interesting feedbacks.

Categories form the default set of messages shipped with the compiler. To extend and
customise this set, users could create their own files and share them. The idea behind
personae here is to bind an author to a file with notifications. Knowing who wrote a
certain suggestion could give value to it and mitigate the effect of a poor feedback,
particularly if the author is known for being a good programmer. Here, a simple and
recommended way to store the category and author's names is through the file's name.

31

In practice most testers were very receptive to it, with different intents. One tester did
not care about the author's name, as long as he/she was a specialist. Another one
conceived the sharing of files inside teams of developers, in companies. The last
considered contributing in online communities of developers rather than friends.

 b) A few rules for composing the messages
During the tests I emphasised the questioning on the quality of the messages, and how
their redaction should be improved. While the testers were often puzzled with the
feedback's technicality, they were paradoxically very fine with it. Indeed, two actually
argued that they were used to this situation. The links to references were intended to
balance this complexity, and in practice were praised by all interviewees. The quality
of redaction had a great influence on the participants' reception of each message,
though. The first query in the second prototype, for example, was systematically
deemed too complex, and I always had to explain it. This difficulty motivated further
the addition of personae, to let programmers choose a good teacher, and sketch a set of
rules to help the redaction of further messages:

➢ Technicality: The feedback should rather be too technical than not enough, and
provide a substantial benefit which will be highlighted.

➢ Context: Indicate what the compiler will do for a particular line/object rather
than what it can do in general.

➢ Referencing: Cite one and only one source giving details for the corresponding
feedback.

➢ Neutrality: Balance the amount of positive and negative feedback, that is when
a line was well understood or when it needs tuning.

➢ Clarity: To be read and understood quickly, each message should receive careful
attention and go straight to the point.

 c) Transparency is crucial
As advocated in Sinha & Swearingen (2002), transparency has been a key design
choice along this work. Providing a reference link along each feedback, targeting the
programmer's knowledge rather than hacking tips, binding an author to the messages,
defining a syntax for notifications and storing them in text files directly accessible to
the programmer, were all choices motivated with transparency in mind. Furthermore,
the next section presents a heuristic to filter messages, simple enough to be exposed to
the user. I should be noted here that transparency is preferred over translucency –
selecting was is shown and what is not – since no thought restriction on the

32

information given was intended. The latter could arise in the future though, with
further iterations on the prototypes.

In my opinion, transparency is the key means to show and insist on the absence of
artificial intelligence, or “ smart assistant” , to govern the suggestions. Giving the
qualifier smart to the robot could make users feel it is asserted to be smarter than
them. Carroll and Aaronson (1988) bring out many receptiveness issues from
interacting with such an agent, which transparency would greatly mitigate. Indeed,
with access to the database of possible messages, and knowledge of who lies behind
them, users are aware of the bounds of the compiler's intelligence, and will not expect
more than it can actually help.

 d) A proposed formula for the sorting and filtering of messages
To allow filtering the notifications while keeping a complete viewable list aside, an
importance factor is to be computed for each message, to sort the list and output the
first few. This factor can further be useful for the third prototype, to sort the
paragraphs inside each tooltip.

For the purpose of being exposed to the programmer, the formula constructed here
aims at simplicity. As a side effect, this would actually ease its implementation. The
importance of a message should depend on the number of times it already occurred, on
the number of messages already published on its line, on the user preference about the
category of the notification, and on how critical it is for the line of code it refers to.

Let us note n the number of previous occurrences of the message, m the number of
previous references to its line, fc the factor assigned to its category, and fl the local
factor denoting its importance for the source code. A candidate formula recommended
here would be the average of 2-n, 2-m, fc and fl, provided the two latter are bounded by
[0 ;1] . The strength of this expression is the simplicity to graphically represent an
average. As a drawback, it does not allow completely disabling one category, though
this is actually possible by simply deleting the corresponding file. Also, the factors
averaged might have to receive an additional scale, which estimation is left to
implementation.

Note that the reinitialisation of the heuristic is to be taken into account. The compiler
might be reinstalled often, possibly clearing the memory of previously displayed
messages and preferences. The more files/categories are stored, the more time will be
needed to reach their previous importance values (considering the programmer can
only decrease/increase this factor on every message received). The number of
categories should thus be limited to a dozen on average.

33

 6. Discussion and concluding words
As shown in the tests, the introduction of a feedback from the compiler was well
received, either indirectly for the “ big picture” overview it would provide, or for its
relevant technical insights. Using this interface does require very little learning, if
any, which is in my opinion a cornerstone of this work.

As for the direction to give to the prospective future iterations of the prototypes, since
both the first and third prototypes were deemed promising the focus should be laid on
implementing the common basis, namely generating the feedback messages. An option
could then be available to choose how to display them. Furthermore, this choice might
depend on the progress of the coding project. At the early stages when raw code is
written, a few technical messages targeting the most critical aspects would be needed,
as in the first prototype. Later in the process when these fragments are assembled, a
broader overview like the third prototype would become useful.

 6.1. Limitations
A few points were left aside during this work, either by lack of time or because they
were a matter of debate. Among them, the initialisation of the system should be
mentioned. Indeed, the introduction to the feedback is important, so that users do not
disable it instinctively like a Message of the day. An example for an introductory text
could be: This compiler can output feedback messages telling how it understands the
code, as well as technical suggestions. The list of feedback messages it can generate is
contained in [folder], and can be extended by adding .cfb files downloaded from trusted
authors.

Also, this thesis work does not cover how to identify the level of knowledge of the users,
as receiving too complex/simple feedback might eventually annoy them. While they can
choose and download the notifications' files to add to the compiler, the initial set of
categories could be specifically tailored to each one's knowledge, by estimating it with
a question along the introductory text, for example.

One last issue which might eventually arise with the possibility to share authored
feedback files is the lack of secure signing. If the author's name is stored in the name
of the file as suggested in this document, nothing prevents it to be overwritten, or a
wrong set of messages be imputed to the same author. The rationale behind the choice
in this thesis is similar to the availability of coding guidelines online though: it is the
user's responsibility to fetch the file at the source she/he trusts.

34

 6.2. Personal conclusions
This project has been a challenging work for me. I started with the idea to have the
compiler return performance-helper messages, much as in the first prototype. The
expected design was then pretty clear, though the content of the messages remained to
be defined. However, most of the time was actually spent on communication tasks.
Indeed, my work suffered from the difficulty to clearly state what was intended by a
feedback, because this word can be interpreted quite at will. From the initial sketch to
the Google Summer of Code discussions, I invested many efforts in iteratively
clarifying the purpose of this thesis. Designing the prototypes with the precision of
HTML and CSS helped dramatically to show exactly what was intended.

The second challenge over this thesis was the difficulty to achieve a stable schedule.
Due to the lack of an office to work in, I had to rely on my own motivation. The pace of
work was thus extremely variable, though it never stopped. During the second half of
the thesis, the regular meetings with my supervisor became really useful to impose
milestones and keep the project progressing. Nevertheless, it lasted longer than
expected, which in turn made the initial concept evolve widely. This is reflected in the
structure of this document, starting from a simple feedback, to a discussion, and
eventually to the personae and sharing of messages.

The last challenge was the management of the two rounds of interviews. In this thesis,
they occupy a predominant place because a sheer amount of time was dedicated to
them, especially for preparing the interview plans and the algorithmic tasks. My lack
of experience to find participants made the first round last over a month, with
relatively few interviews conducted. With the experience gained (and the help of home-
baked cookies and muffins), the second round was more successful, though with
paradoxically few participants since conducted during summer holidays.

In my view, it is the user studies which could be improved the most. I was satisfied
with the preparation of the interview plans, particularly for the preparatory study,
which probably allowed a pretty authentic observation of users programming.
However, it was too “ close to the textbook” to distil the most of each interview. Indeed,
a well-prepared interview benefits from an original approach, so as to surprise oneself
and avoid observing what was initially intended.

Moreover, I considered the method think aloud as an efficient way to gather users'
needs, and applied it by instructing the participants to share their thoughts. It would
perhaps have been more efficient to apply it meticulously instead, to bring the
interviews off the beaten track and shed a different light on the problem, with the help
of each participant.

35

References
Aho, A. V., Lam, M. S., Sethi, R., & Ullman, J. D. (2006). Compilers: Principles,

Techniques, and Tools (2nd ed.). Prentice Hall.

Bose, P. (1988). Interactive program improvement via EAVE: an expert adviser for
vectorization. Proceedings of the 2nd international conference on Supercomputing -
ICS ’ 88 (pp. 119– 130). New York, New York, USA: ACM Press.
doi:10.1145/55364.55376

Carroll, J., & Aaronson, A. (1988). Learning by doing with simulated intelligent help.
Communications of the ACM, 31(9), 1064– 1079. doi:10.1145/48529.48531

De Bruijn, O., & Spence, R. (2008). A new framework for theory-based interaction
design applied to serendipitous information retrieval. ACM Transactions on
Computer-Human Interaction, 15(1), 5:1– 5:38. doi:10.1145/1352782.1352787.

Dow, S. P., Glassco, A., Kass, J., Schwarz, M., Schwartz, D. L., & Klemmer, S. R.
(2010). Parallel prototyping leads to better design results, more divergence, and
increased self-efficacy. ACM Transactions on Computer-Human Interaction, 17(4),
1– 24. doi:10.1145/1879831.1879836

Kreeger, M. N. (2009). Security testing. ACM SIGCSE Bulletin, 41(2), 99– 102.
doi:10.1145/1595453.1595484

Lethbridge, T. C. (2000). What knowledge is important to a software professional?
Computer, 33(5), 44– 50. doi:10.1109/2.841783

MathWorks. (n.d.). Using the MATLAB Code Analyzer Report. Retrieved September 7,
2012, from http://www.mathworks.se/help/techdoc/matlab_env/f9-11863.html

Saffer, D. (2009). Designing for Interaction: Creating Innovative Applications and
Devices (2nd ed.). New Riders Press.

Sinha, R., & Swearingen, K. (2002). The role of transparency in recommender systems.
CHI ’ 02 extended abstracts on Human factors in computer systems, 830.
doi:10.1145/506558.506619

Zhao, W., Jones, D. L., Cai, B., Whalley, D., Bailey, M. W., van Engelen, R., Yuan, X., et
al. (2002). VISTA. ACM SIGPLAN Notices, 37(7), 155. doi:10.1145/566225.513857

36

http://www.mathworks.se/help/techdoc/matlab_env/f9-11863.html

Appendix A
This appendix contains the full discussion thread of the proposition submitted to GCC
for a Google Summer of Code. The two first boxes are the initial answers to my
proposal in Figure 9, my answer is split in the two last boxes.

While your idea sounds interesting, I think you are severely underestimating the complexity. The compiler
usually performs thousands of transformations, not all of them in the same place and certainly not all of them in
code that can tolerate injecting the kind of analysis code you will need to inject.

Additionally, not all the transformations the compiler does are easily mapped onto an expression or line of code
that makes sense to the programmer (much of the code optimized by the compiler is a side-effect of other
transformations or code implicitly generated to support higher-level abstractions).

Perhaps you could reduce the scope a bit by concentrating on a single pass. I would recommend looking at the
vectorizer statistics output to get an idea.

I agree with [the previous reviewer]. But I would expect that most users are mostly interested in whether specific
transformations were applied or not (e.g. “ was my loop vectorized?”), so perhaps you could limit the scope of your
project to a small number of major code transformations.

Alternatively, it would be a really useful project if you could instead make more passes use the statistics
framework (and improve that framework while at it). This may not be as useful for users, but for compiler
developers better organized information in the pass dumps would be very useful.

37

Hi,

The feedback needs actually not be fetched the closest to the transformation code, as long as we can report what
GCC can and cannot do on a portion of code. Also, we do not need to be exhaustive on all the transformations
done inside GCC. The intent of the feedback is to get the user browse the Internet to learn more on the standard
optimization techniques. Ideally I would have put HTTP links to GCC docs in the feedback, but since it is
impossible the optimization name is required to be cited.

A precision here for the reporting of “ what GCC can and cannot do” . This is not meant as a list of optimizations
which are actually implemented, and optimizations which will be in the future, for comparison with other
compilers. This is rather a list of optimizations you can expect a compiler to perform, and portions of code which
cannot be understood because of the impracticability of the expected transformation.

Placing the feedback calls closest to the transformations code had two main reasons:
_ Reduced maintenance, as the transformation and the feedback are in the same source file.
_ In a further improvement, each transformation unit could directly query the user (or a file representing his/her
preferences) for hints, for example to choose the data structure underlying a map object. In fact we could also use
the current feedback to propose the user to write a pragma hint.

My initial proposal involves coding only an info_printf for use by the maintainers of the various
transformations. However, I was certainly optimistic with the scope of it, as we cannot expect the maintainers for
each optimization to spontaneously update their code to output feedback. Most of them might actually not see any
use for it, and will ignore it. If the final feedback includes only a handful of optimizations it will look like a
useless proof of concept.

I can thus go for the single pass. If possible, I would rather still be using an info_printf function, so as to allow
maintainers to further move it closer to the code, when mapping onto source code is possible of course.

The revised work plan:
_ Enumerate all messages for each optimization technique, along with the observable GIMPLE/option flag
pattern.
_ Implement a function receiving feedback from each optimization unit and choosing whether to display it:
info_printf(enum INFO_INDEX, const char*, ...);
_ Implement the messages for at least one optimization technique, through a single GIMPLE pass.
_ Write a formatting guide for composing a feedback message.

There are still some very standard optimizations for which detection over GIMPLE is not trivial and would
actually mean trying to make the job of the transformation itself. For example, CSE (Common Subexpression
Elimination). In this case I would create a general message (i.e. not relating to source code), but still describing
what triggers CSE. An other example is Dead code elimination, which depends on static profiling. There would be
a message for the trivial if (0), and a few general messages to introduce Value range propagation and its use to
detect unreachable code.

So far I could list these optimizations which we could guess by overlooking on a single pass:
_ SSA (Single State Assignment)
_ Dead code elimination (for the if (0))
_ Strength reduction
_ Function inlining
_ Tail recursion
_ Data alignment
_ Stack optimizations
_ if conversions (detection of simple conditional moves?)
_ Register allocation (for the expectable storage of function arguments in registers – if there exists a common
ground for the various ABIs – Application Binary Interfaces)
_ Interprocedural analysis
_ Math optimizations

38

For these other optimizations I will write a few general messages, and if possible they should eventually be moved
closer to the transformation code:
_ CSE
_ Peephole/Superoptimization
_ Vectorization
_ Parallelization
_ Instructions scheduling

My method for the GsoC (Google Summer of Code) would actually be listing the expectations from a user point of
view rather than listing transformations as above. Here is how it would look like for Vectorization:
_ What is vectorization? Which architectures?
_ How can one ask for/verify Vectorization?
_ Can GCC vectorize the same parallel arithmetic operation? How many at the same time?
_ Can it vectorize a simple loop? How many minimal iterations?
_ Can it detect/vectorize a [circular] shift?
_ Can it understand my complex loop index?
_ Can it manage my variable dependancies?
_ How would n parallel additions in a loop be vectorized?

Here are the corresponding information bits which will form the feedback messages:
_ Vectorization is SIMD (Single Instruction Multiple Data), performance boost, available on the main
architectures [...], independent from the OS (Operating System) (General message – triggered when more than 2
arithmetic operations are performed, on a SIMD-capable architecture).
_ Auto-vectorization enabled with -O3, -ftree-vectorizer-verbose=2 to verify, difference between loop
vectorization and SLP (Superword Level Parallelism) (General message – triggered if the previous message has
already appeared).
_ Arithmetic operations supported for vectorization, number in parallel depends on type and architecture, the
number for "this" type on "this" architecture is [...].
_ Certain to vectorize operations on range of array without cross-dependancies, overhead for vectorization and
need for cost model, the loop threshold for "this" case is [...].
_ ???
_ linear indices understood in general, stride 1 or 2 actually vectorized, in "this" case it was/not vectorized
_ Certain to manage dependencies with distance 1, involves following dependence path and handling cycles, try to
avoid them
_ ??? (Meant as a fun fact to show how loop vectorization and SLP interact)

39

Appendix B
This appendix contains two scanned interview sheets, respectively from the
preparatory study and the user study with the prototypes.

40

41

TRITA-CSC-E 2012:084
ISRN-KTH/CSC/E--12/084-SE

ISSN-1653-5715

www.kth.se

	1. Introduction
	1.1. Problem definition
	1.2. Challenges
	1.3. Method

	2. Related work
	2.1. Research methodology
	2.2. Study of three similar efforts
	a) VISTA, the vpo Interactive System for Tuning Applications
	b) EAVE, the Expert Adviser for Vectorization
	c) Matlab Code Analyzer

	2.3. Rationale and differentiators
	a) The compiler queries the programmer
	b) No separate interface
	c) Cooperation instead of assistance
	d) The filtered notifications

	3. Preparatory study
	3.1. The interview plan
	3.2. Conducting the interviews
	a) Problem solving
	b) Subsequent findings

	4. Three prototypes
	4.1. First prototype: a stripped version for GCC
	4.2. Second prototype: a communicative compiler
	4.3. Third prototype: a far-fetched alternative

	5. User study with the three prototypes
	5.1. A new round of interviews
	5.2. Findings and suggestions for future work
	a) The personae
	b) A few rules for composing the messages
	c) Transparency is crucial
	d) A proposed formula for the sorting and filtering of messages

	6. Discussion and concluding words
	6.1. Limitations
	6.2. Personal conclusions

	References
	Appendix A
	Appendix B

