
Program Semantics and Analysis: Lab1
Thibault Raffaillac, 871109-A416

Overview of the program
In a first part, the compiler parses the source code and translates it to AM (Abstract Machine) code.
This part was mostly already implemented in the Lab files, and thus does not need be explained.

In the second part, the compiler translates the AM code to actual assembly instructions. This part is
achieved through two passes of the AM tree: the first one lists the variables used and gathers their
global properties, the second one generates the instructions.

A Hashtable with the custom class Variable is used to enumerate the variables of the program and hold
their properties. The class will be extended in the second Lab to hold the additional properties of the
variables. Currently, the only property recorded is if the variable is first used initialized or not. This
allows the compiler to add code to prompt the values of uninitialized variables at program beginning.

While writing, the compiler keeps track of the last label name used, to guarantee uniqueness of labels
names in the assembly code generated. This required the creation of a mutable integer class,
MutableInt, based on org.apache.commons.lang.mutable.MutableInt, to pass integers by reference.

Extension of the While language

In natural semantics:
〈S1 , s 〉 s ′

〈try S 1catch S 2 , s 〉 s ′
[try NS

1]
〈S1 , s 〉s ′ 〈 S2 , s ′ 〉 s″
〈try S 1catch S 2 , s 〉 s″

[tryNS
2]

The AM instructions TRY(c1, c2) and CATCH(c1) are added along with the abnormal machine state:
〈TRY c1 , c2 , e , s〉▷ 〈c1:CATCH c2 , e , s〉
〈CATCH c1: c , e ,s 〉▷〈c1: c , e , s〉
〈CATCH c1: c , e , s〉▷ 〈c , e , s 〉

Also, when given an abnormal state, the try statement and TRY instruction are skipped.

The transformation from Statement to code is straightforward:
CS 〚try S1 catch S 2〛=TRY CS 〚S1〛 ,CS 〚S 2〛

Derivation tree for trycatchsample.while (for convenience I noted sn=s[x n] and skipped rules names)↦ :

〈 x :=7, s 〉 s7

〈 x :=x−7, s7〉 s0

〈 x :=7/ x , s0〉 s0 〈 x := x7, s0 〉 s0

〈 x :=7/ x ; x :=x7, s0〉 s0

〈S1 , s7〉 s0 〈 x := x−7, s0〉 s−7

〈 try S1 catch S 2 , s〉 s−7

〈 x :=7 ; try S1 catch S 2 , s〉 s−7

Execution of this program in AM language: 〈 PUSH−7 : STORE− x :TRY c1 :c2 , e , s〉
▷〈TRY c1 :c2 , e , s [x↦7]〉
▷〈c1:CATCH c2 , e , s [x↦7] 〉
▷〈CATCH c2 , e ,s [x↦0]〉
▷〈c2 , e , s [x↦0]〉
▷〈 ε , e , s [x↦−7]〉

The semantics correctness is proving that M 〚CS 〚S 〛〛s =s ' ⇔S NS〚S 〛 s=s ' holds for any
Statement S and any States s and s'.

We first prove correctness for the try statement: Let us examine the effect of a TRY(c1, c2) instruction,
given a normal initial state. Thanks to the first AM rule, it is directly replaced by c1:CATCH(c2). If c1

ends in a normal state, the third AM rule holds and CATCH(c2) is skipped. This results in only c1

having been executed, which conforms to the [try1
NS] rule. If c1 had ended in an abnormal state, the

second AM rule would hold, and c2 would be executed given a normal state. This results in c1 and c2

being executed, as in the [try2
NS] rule.

The second addition to the semantics correctness proof is the introduction of abnormal states. All
statements are skipped under abnormal state, and all AM instructions except CATCH are NOPed, so
they trivially verify the correctness proof.

Workflow
My first goal was a bit ambitious (and a bit crazy, but how fun!), it was to directly write machine
instructions without the intermediate step of assembly code. Indeed, the opcodes are well documented
in the x86 instructions list, and the PE COFF specification from Microsoft is clear and concise. In the
mean time it turned out that my 32bits WinXP laptop broke down, so I decided to try the 64bits
architecture and the ELF format, giving up machine instructions towards assembly instructions.

I first set a proper working environment: links and copies of the instruction set reference, AMD64 ABI
(though after reading, it was ill explained), compiled nasm which has the simplest syntax of all
assemblers, its manual, ld as linker, and links to a bunch of tutorials.

With this I first managed to write the assembly dumping for each AM instruction. A first test on
gcd.while made an infinite loop. A function to display a number was needed. Rather than relying on
glibc, the task was simple enough to be hand-coded and carried with system calls. I thus wrote the code
to display a number, then the code to prompt a number, in the file samples/readNumber.asm

Since the While language had no read and write statements, there was no way to manually insert
prompt and display code, so I made that uninitialized variables be prompted then displayed at program
exit. All samples were modified to remove variables initializations.

I finally performed proper testing and corrected a few bugs.

I estimate having spent 5 to 6 full days on this lab, mostly on reading documentations, but the result
was worth it!

Links
Here are the few valuable links I found during this Lab:

This tutorial is on 32bit architecture, thus not valid on system calls, but it was a good introduction:
http://www.cin.ufpe.br/~if817/arquivos/asmtut/index.html

This tutorial is very light, but on 64bit architecture: http://vikaskumar.org/amd64/index.htm

Excellent document that sums the x86-64 ABI: http://web.cecs.pdx.edu/~apt/cs322/x86-64.pdf

Boolean arithmetic: http://webster.cs.ucr.edu/AoA/Windows/HTML/IntegerArithmetica2.html#999863

Syscall reference for x86-64: http://lxr.free-electrons.com/source/arch/x86/include/asm/unistd_64.h

http://www.cin.ufpe.br/~if817/arquivos/asmtut/index.html
http://lxr.free-electrons.com/source/arch/x86/include/asm/unistd_64.h
http://webster.cs.ucr.edu/AoA/Windows/HTML/IntegerArithmetica2.html#999863
http://web.cecs.pdx.edu/~apt/cs322/x86-64.pdf
http://vikaskumar.org/amd64/index.htm

Testing
The testing was carried with 4 programs, each testing 4 to 5 AM instructions:

• Test 1: FETCH, STORE, PUSH and ADD
i := plusOne;
i := i + 1;
plusOne := i

• Test 2: MULT, DIV, SUB, TRY and NOP
i := minusOne;
i := i - 1;
minusOne := i;
i := timesTwo;
i := i * 2;
timesTwo := i;
try

i := divByThree;
i := i / 3;
divByThree := i

catch
skip

• Test 3: BRANCH, LOOP, FALSE and TRUE
i := plusOne;
(if true then

i := i + 1;
(while false do

i := i + 2)
else

skip);
plusOne := i

• Test 4: AND, EQ, LE and NEG
i := plusFifteen;
(if 255 = 256 then

skip
else

i := i + 1);
(if !(0 = 1) then

i := i + 2
else

skip);
(if 255 <= 256 then

i := i + 4
else

skip);
(if !(1 <= 0) & 1 <= 2 then

i := i + 8
else

skip);
plusFifteen := i

